Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Географический факультет

УТВЕРЖДАЮ
Декан географического факультета
член-корр. РАН Добролюбов С.А.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В БИОГЕОГРАФИИ И ЭКОЛОГИИ
Уровень высшего образования:
магистратура
Направление подготовки:
05.04.06 «Экология и природопользование»
Направленность (профиль) ОПОП:
«Экологическая биогеография»
Форма обучения:
очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией географического факультета (протокол № 13, дата 20 декабря 2021 г.) Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки «Экология и природопользование» (программы бакалавриата, магистратуры, реализуемым последовательно по схеме интегрированной подготовки).

ОС МГУ утверждены решением Ученого совета МГУ имени М.В. Ломоносова (приказ по МГУ № 1383 от 30 декабря 2020 года).

Год (годы) приема на обучение: 2021

© Географический факультет МГУ имени М.В. Ломоносова Программа не может быть использована без разрешения факультета.

- 1. Место дисциплины (модуля) в структуре ОПОП относится к вариативной части ОПОП, является обязательной для освоения;
- 2. Входные требования для освоения дисциплины (модуля), предварительные условия: базируется на знаниях по курсам: «Информатика», «Биогеография» и «Экология».
- 3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников

оы (показатели) Планируемые результаты обучения по дисциплине (модулю), компетенций сопряженные с компетенциями
Применяет ю, сие концепции обработки и визуализации полевых, фондовых и литературных данных в профильной области исследований; специфику различных классов программных инструментов при решении практических задач биогеографии и экологии; технические требования к использованию программных и технических средств, применяемых при решении практических закономерностей в данных; оценивать степень сложности прикладной задачи в предметной области и выбирать наиболее эффективный программный или технический инструментарий для ее решения; оценивать собственные возможности и время необходимое для освоения новых программных при решении практических задач биогеографии и экологии. Владеть: навыками подготовки картографических материалов для работы в экспедициях; навыками использования основных программных средств для выполнения аналитической обработки данных с помощью современных методов статистики и пространственного анализа; навыками обработки и визуализации информации в предметной области с помощью распространённых программных пакетов, ГИС и СУБД.
[] [] []

- 4. Объем дисциплины (модуля) 3 з.е., в том числе 54 академических часа на контактную работу с преподавателем, 54 академических часа на самостоятельную работу обучающихся.
- 5. Формат обучения не предполагает электронного обучения и использования дистанционных образовательных технологий (за исключением форс-мажорных обстоятельств пандемии и т.п.).
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

Наименование и краткое содержание разделов и тем	Всего	В том числе						
дисциплины (модуля),			Контактная работа			Самостоятельная работа		
		(работа во			обучающегося			
Форма промежуточной аттестации по дисциплине		взаимодействии с		Виды самостоятельной				
(модулю)			преподавателем)		работы, часы			
			Виды контактной работы, часы*					
			paooi	<u>пы, час</u>				Danna
		Занятия лекционного типа	Занятия семинарского типа	Практические занятия	Всего	Работа с литературой (включая подготовку доклада)	Выполнение практической работы	Всего
Тема 1. Введение. Основные области применения компьютерных методов в работе биогеографа и эколога.	12	2	2	2	6	2	4	6
Тема 2. Основные положения математической и статистической обработки данных.	16	4	4		8	4	4	8
Тема 3. Корреляционный и регрессионный анализ. Основные приемы и программные средства для вычисления	14	2	4	2	8	2	4	6
Тема 4. Статистически ориентированная программная средаR. Основные принципы работы.	16	2	2	4	8	4	4	8
Тема 5. Пространственная статистика. Основные понятия и программные инструменты в популярных ГИС-пакетах.	16	2	2	4	8	2	6	8

Тема 6. Кластерный анализ и программные средства для его проведения	14	2	2	4	8	2	4	6
Тема 7. Методы моделирования ареалов. Подготовка данных и работа с программой MaxEnt	16	4	2	2	8	2	6	8
Промежуточная аттестация: зачет	4	Устный зачет		4				
Итого	108	54		54				

Содержание лекций, семинаров

Содержание лекций

Тема 1. Введение. Основные области применения компьютерных методов в работе биогеографа и эколога

Обзор практических задач в биогеографических и экологических научных исследованиях, и проектах. Основные классы программных продуктов, используемых в биогеографии и экологии: ПО для статистического анализа, ГИС, специализированное ПО. Введение в системы глобального геопозиционирования. Некоторые информационные ресурсы, полезные для биогеографа и эколога. Геоинформационные системы: лицензионное и свободное ПО. Основные принципы и способы визуализации данных в ГИС.

Тема 2. Основные положения математической и статистической обработки данных.

Основные понятия математической статистики. Меры центральной тенденции и дисперсии данных. Среднее, мода, медиана. Стандартное отклонение, дисперсия. Визуальное представление размаха для набора данных. Распределения. Основные виды распределений и их применение. Детерминистический и стохастических методы вычислений. Понятие итераций. ПО для стохастического вычисления, примеры работы в нём. Оценка гипотез и критерий статистической значимости.

Тема 3. Понятия корреляции и регрессии и основные программные средства для их вычисления.

Понятие корреляции. Коэффициенты корреляции Пирсона и Спирмена. Основные приемы оценки корреляции в MS Excel. Определение статистической значимости коэффициента корреляции. Критерий Стьюдента и способы его вычисления. Понятие регрессии. Уравнение линейной регрессии. Тренды и их статистическая значимость. Основные модели обобщенной линейной регрессии и их применимость. Мультиколлинеарность переменных и способы ее устранения.

Тема 4. Статистически ориентированная программная среда R. Основные принципы работы.

Программные средства для статистической обработки данных. Программная среда R и основные принципы работы в ней. Понятие о пакетах анализа. Основные форматы представления числовых и нечисловых данных. Импорт данных в R. Составление регрессионных моделей: гауссова, пуассоновская и логистическая модели. Обсчет моделей и вывод данных. Интерпретация статистических метрик регрессии. Основные статистические критерии: R-квадрат, критерий Акаике, критерий Хосмера-Лемешоу, тест Шапиро-Уилка и др.

Тема 5. Пространственная статистика. Основные понятия и программные инструменты в популярных ГИС-пакетах.

Понятие пространственной статистики и аналогия с математической статистикой. Описательная и аналитическая статистика. Основные меры центральной тенденции и рассеяния данных: средний центр, стандартное расстояние, эллипс направленного распределения. Понятие автокорреляции. Понятие кластерного анализа: горячие и холодные точки, основные приемы их выявления. Возможности ГИС и

специализированного ПО для выявляения кластеров. Геостатистика и ее основные методы: обратно взвешенное расстояние, сплайн, кригинг. Примеры применения.

Тема 6. Понятие кластерного анализа. Программные средства для выявления кластеров.

Понятие пространственных и пространственно-временных кластеров. Статистические основы выявления кластеров в данных. ПО для выявления кластеров: ArcGIS, SatScan, ClusterSeer. Пространственные и пространственно-временные модели: нормальная модель, модель Бернулли, модель Пуассона, пространственно-временные перестановки. Понятие пространственно-временного куба. Создание пространственно-временного куба в ArcGIS и основные методы его статистической обработки и визуализации. Анализ и кластеризация временных серий.

Тема 7. Методы моделирования ареалов. Подготовка данных и работа с программой MaxEnt.

Понятие ареала как экологической ниши. Эволюция понятия. Основные принципы моделирования экологических ниш. Применимость принципа для моделирования нозоареалов заболеваний. Методики выявления экологических ниш: регрессионные методы, GARP, Maxent и др. Принцип максимальной энтропии. Требования к подготовке данных для работы в Маxent. Использование ГИС-инструментов для предварительной обработки данных. Приложение SDM Toolbox для ArcGIS. Интерпретация выходных метрик Maxent: AUC, оценка относительного вклада переменных, кривые отклика. Экспорт и визуализация данных в ГИС. Использование прогностических показателей климата.

План проведения семинаров

- 1. Обсуждение программных пакетов, используемых в научных исследованиях
- 2. Обсуждение основные ГИС пакетов
- 3. Обсуждение возможностей MS по статистической обработке данных, и их ограничений
- 4. Примеры лицензионного ПО для стохастических вычислений (ModelRisk, @Risk), принципы работы и сфера применения
- 5. Доклады студентов (с презентацией) по темам: визуализация набора числовых данных; основные виды распределений и их применимость; эволюция понятия экологических ниш и современное ПО для их моделирования; и др.
- 6. Обсуждение применимости регрессионных моделей для выявления закономерностей в областях исследования студентов.
- 7. Обсуждение основных методов выявления пространственных и пространственно-временных кластеров и ПО для соответствующего анализа.

7. Фонд оценочных средств для оценивания результатов обучения по дисциплине (модулю):

Примерный перечень тем для самостоятельной работы студентов

1. Составить перечень картографических материалов (векторных слоев, космических снимков и топокарт), необходимых для выполнения собственного проекта.

- 2. Провести поиск картографических материалов интересующего географического района в сети Интернет. Загрузить, найденный материалы на компьютер для последующей обработки.
- 3. Создать карту-основу для собственного проекта, импортировать в используемую ГИС данные для создания тематического слоя.
- 4. Создать статистический отчет-описание набора числовых данных.
- 5. Определить применимость метода корреляции для предложенного набора данных. Вычислить коэффициент корреляции и его значимость.
- 6. Импортировать данные в R и составить регрессионную модель. Вывести и интерпретировать ее результаты.
- 7. Выявить «горячие точки» в распределении заболеваемости по модельному региону с помощью методов пространственной статистики ArcGIS.
- 8. Выявить пространственные кластеры в предложенном наборе данных. Визуализировать кластеры на карте.
- 9. Произвести моделирование нозоареала заболевания с помощью ПО Maxent с использованием предоставленных данных

Примерный перечень вопросов для зачета

- 1. Основные классы программных продуктов, используемых в биогеографии и экологии.
- 2. Интернет-ресурсы для поиска картографических материалов разного масштаба.
- 3. Основные системы глобального геопозиционирования.
- 4. Приемы статистической обработки данных в MS Excel и их ограничения.
- 5. Основные приемы оценки корреляции и ее статистической значимости.
- 6. Основные виды регрессионных моделей. Их применимость в зависимости от типа данных.
- 7. Программная среда R. Основные принципы импорта данных.
- 8. Интерпретация статистических метрик регрессионной модели.
- 9. Понятие пространственной статистики. Аналогии между математической и пространственной статистикой.
- 10. Геостатистика. Основные методы пространственной интерполяции
- 11. Понятие автокорреляции и его применение в пространственном моделировании.
- 12. Основные приемы работы с пространственными данными в ГИС: соединение, отношение, экспорт данных.
- 13. Основные приемы визуализации векторных и растровых данных в ГИС.
- 14. Понятие кластерного анализа. Пространственные и пространственно-временные кластеры.
- 15. ПО для поиска кластеров данных. Основные приемы работы.
- 16. Понятие экологической ниши.
- 17. Применимость методов моделирования экологических ниш для моделирования ареалов и нозоареалов.
- 18. Основные интернет-ресурсы для поиска экологических данных.
- 19. Алгоритм создания простых карт и картосхем при помощи ArcGIS и QGIS.
- 20. Компьютерные форматы хранения больших числовых и нечисловых данных.
- 21. Выбор компьютерного инструментария для реализации относительно сложного проекта.

Шкала и критерии оценивания

Промежуточная аттестация по итогам освоения дисциплины – зачем (в устной форме)

Оценка РО и соответствующие	Незачет	Зачет
виды оценочных средств		
Знания (виды оценочных средств:	Фрагментарные знания или	Сформированные систематические знания или общие, но
устный опрос, реферат)	отсутствие знаний	не структурированные знания
Умения (виды оценочных	В целом успешное, но не	Успешное и систематическое умение или в целом
средств: устный опрос, реферат)	систематическое умение или	успешное, но содержащее отдельные пробелы умение
	отсутствие умений	(допускает неточности непринципиального характера)
Навыки (владения, опыт	Наличие отдельных навыков или	Сформированные навыки (владения), применяемые при
деятельности) (виды оценочных	отсутствие навыков	решении задач или, в целом, сформированные навыки
средств: устный опрос, реферат)		(владения), но используемые не в активной форме

8. Ресурсное обеспечение:

Перечень основной и дополнительной учебной литературы

Основная литература:

- 1. Куролап С.А., Нестеров Ю.А., Фетисов Ю.М. и др. Практикум по информационным технологиям / под ред. В.С. Тикунова и С.А. Куролапа. Воронеж: Воронежский гос. университет, 2008, 266 с.
- 2. Капралов Е.Г., Кошкарев А.В., Тикунов В.С. и др. Геоинформатика: Учебник для студентов ВУЗов / под ред. В.С. Тикунова. М.: Изд. Центр «Академия», 2005, 480 с.
- 3. Основы геоинформатики (в 2-х кн.) / колл. авторов под ред. В.С. Тикунова. М.: Издательский Центр «Академия», 2004, 832 с.

Дополнительная литература:

- 1. Берлянт А.М. Геоинформационное картографирование. М., 1997, 64 с.
- 2. Берлянт А.М., Ушакова Л.А. Картографические анимации. М.: Научный мир, 2000, 108 с.
- 3. Боровиков В.П. STATISTICA: искусство анализа данных на компьютере. Для профессионалов. СПб.: Питер, 2001. 656 с.
- 4. Бышов Н.В., Бышов Д.Н., Бачурин А.Н., Олейник Д.О., Якунин Ю.В. Геоинформационные системы в сельском хозяйстве Рязань: ФГБОУ ВПО РГАТУ, 2013 169 с.
- 5. Востокова А.В., Кошель С.М., Ушакова Л.А. Оформление карт. Компьютерный дизайн: Учебник / под ред. А.В. Востоковой. М.: Аспект Пресс, 2000, 288.

- 6. Гиляров, А.М. Популяционная экология: учеб. пособие / А.М. Гиляров. М.: Изд-во МГУ, 1990. 191 с.
- 7. Кольцов А.С. Геоинформационные системы: учеб. пособие / А.С. Кольцов, Е.Д. Федорков. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2006. 203 с.
- 8. Коновалова Н.В., Капралов Е.Г. Введение в ГИС. Учебное пособие. Петрозаводск: Изд-во Петрозаводского Университета, 1995, 148 с.
- 9. Лурье И.К., Косиков А.Г., Ушакова Л.А. и др. Компьютерный практикум по цифровой обработке изображений и созданию ГИС / Дистанционное зондирование и ГИС. М.: Научный мир, 2004, 148 с.
- 10. Огуреева Г.Н., Котова Т.В., Емельянова Л.Г. Экологическое картографирование. Биогеографические подходы: Учебное пособие. М.: Географический факультет МГУ, 2010, 160 с.
- 11. Периодические издания: «Информационный бюллетень ГИС-Ассоциации»; журнал «ГИС-обозрение» и др.
- 12. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере / под ред. В.Э. Фигурнова. М.: ИНФРА-М, 1998, 528 с.
- 13. Phillips, S.J. Maximum entropy modeling of species geographic distributions / S.J. Phillips, R.P. Anderson, R. E. Schapire // Ecological Modelling. 2006. Vol.190. P. 231-259.
- 14. Johnson I. Understanding MapInfo: A Structured Guide. Archaeology (P&H), University of Sydney, 1996, 290 pp.
 - перечень лицензионного программного обеспечения
 - о ПО для создания электронных таблиц MS Excel
 - о ПО для правки электронных текстов MS Word
 - о ПО для создания электронных презентаций MS PowerPoint
 - o ГИС ArcGIS
 - нелицензионное ПО
 - o ГИС QGIS
 - о ПО для кластерного анализа SatScan
 - о ПО для моделирования экологических ниш MaxEnt
 - о Статистически ориентированная программная среда R
 - о ПО для пространственно-временного анализа ClusterSeer (демо-версия)
 - о ПО для стохастических вычислений ModelRisk (демо-версия)
- 2. Перечень профессиональных баз данных и информационных справочных систем
- реферативная база данных издательства Elsevier: www.sciencedirect.com
- онлайн учебные ресурсы Esri ArcGIS: https://desktop.arcgis.com/ru/arcmap/latest/get-started/introduction/arcgis-tutorials.htm

- 3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости)
 - поисковая система научной информации <u>www.scopus.com</u>
 - электронная база научных публикаций www.webofscience.com
 - электронный портал климатических данных www.worldclim.org
 - портал Esri ArcGIS в России www.esri-cis.ru
 - портал BioDat www.biodat.ru

Описание материально-технической базы

Специализированный кабинет (компьютерный класс), оснащенный компьютерами, объединенными в локальную сеть, с выходом в Интернет; оборудование для демонстраций (цифровой проектор с экраном или телевизор)

- 9. Язык преподавания: русский
- 10. Преподаватель (преподаватели): ответственный за курс Алексей Владимирович Бобров, профессор, д. б. н.; преподаватель: Фёдор Игоревич Коренной, с. н. с., к. г. н.
- 11. Разработчик программы: Фёдор Игоревич Коренной, с. н. с., к. г. н., кафедра биогеографии.